Новый суперконденсатор вдвое увеличил дальность пробега электромотоцикла

Для того чтобы продемонстрировать высокую эффективность нового суперконденсатора, компания Nawa создала электрический мотоцикл, который, несмотря на небольшой аккумулятор, способен проехать до 300 км.

Представленный Nawa Racer является единичным прототипом, не будет производиться в дальнейшем и не продается. По сути, он является лишь наглядной рекламой основного продукта компании – ионистора, который способен собирать гораздо больше энергии торможение, чем другие существующие альтернативы.

Мотоцикл оснащен небольшим литий-ионным аккумулятором мощностью 9 кВтч. Над ним расположен суперконденсатор на 0,1 кВтч, который собирает 80-90% энергии торможения, что в разы больше, чем может накопить батарея. Таким образом, мотоцикл может проехать в городских условиях до 300 км, что почти вдвое больше по сравнению с пробегом байка только с одним аккумулятором.

Разработанный Nawa ионистор изготовлен из углерода, относительно недорогой и имеет массу всего 10 кг. Однако позволяет увеличить номинальную емкость аккумулятора примерно на 65%. Использование батареи для получения такого прироста, сильно увеличило бы массу транспортного средства.

Другое преимущество заключается в приросте мощности. Racer способен разгоняться от 0 до 100 км/ч за 3 секунды. При этом суперконденсатор можно применить в других моделях мотоциклов, автомобилях или других электрических транспортных средствах.

Nawa продемонстрирует свою модель в живую на выставке CES 2020.

Возможно, разработкой заинтересуются Boeing и Porsche, которые совместно занимаются разработкой летающего электромобиля.

https://oko-planet.su/discussions/discussionshelp/548199-obraschenie-k-chitatelyam-o-sotrudnichestve.html

Российские ученые создали сплав для добычи ископаемых в Арктике

НИТУ «МИСиС» разработал новое поколение сверхтвердых сплавов для горно-промышленного оборудования, предназначенного для добычи полезных ископаемых в условиях Арктики, рассказал руководитель проекта, профессор университета Евгений Левашов.

По словам Левашова, ученые в рамках госпрограммы по развитию Арктики разработали принципиально новые крупнозернистые твердые сплавы, которые увеличивают прочность и износостойкость горного оборудования в два раза. Данные материалы обладают особой структурой с несколькими уровнями иерархии, что означает, что материал содержит структурные составляющие с сильно различающимися размерами зерен – от 6-8 микрометров до 10 нанометров.

«Разработка представляет собой технологию производства нового поколения крупнозернистых твердых сплавов, обладающих особо однородной структурой с округлыми зернами карбида вольфрама и наномодифицированной кобальтовой связкой. За счет введения в состав сплава функциональных легирующих добавок и оптимизации режимов изготовления, в пластичной кобальтовой связке выделяются упрочняющие наночастицы пластинчатой формы с характерным размером 4-5 нанометров. Это обеспечивает одновременный рост трещиностойкости, прочности и износостойкости материала», – передает РИА «Новости» слова Левашова.

Промышленные испытания нового сплава были проведены в конце ноября 2019 года на шахте «Полысаевская» (Кемеровская область), в ходе испытаний проходческим комбайном на глубине 250 метров было переработано более 700 кубометров породы. Горные резцы из новых сплавов продемонстрировали полное отсутствие сколов, при том, что их ресурс на 80-100% превзошел лучшие отечественные и зарубежные аналоги.

Ожидается, что внедрение разработки позволит значительно повысить эффективность добычи полезных ископаемых на месторождениях Арктического региона России.

Напомним, в октябре ученые (НИТУ «МИСиС») создали новые эффективные алюминиевые сплавы для использования различных видах современного транспорта.

https://oko-planet.su/

В Калифорнии власти разрешили доставку посылок при помощи беспилотных автомобилей

Калифорнийские власти разрешили доставлять товары при помощи беспилотников. Об этом сообщается на сайте Департамента транспортных средств штата. Компании смогут получить лицензию на их эксплуатацию с середины января 2020 года.

Компании смогут использовать для доставки транспорт, который весит менее 4,5 тонн (10 тысяч фунтов). В документе уточняется, что власти будут выдавать два типа лицензий — на тестирование с водителем и без него. Для коммерческого использования (взимания платы за доставку) придётся подать дополнительное заявление.

Все транспортные средства пройдут обязательную сертификацию на предмет безопасности и соответствия другим требованиям властей. При тестировании с водителем, фирма также будет обязана предоставить документы о его квалификации. По заявлению властей, лицензии на тестирование беспилотников с водителем получили 65 компаний и ещё одна — без водителя.

Беспилотные автомобили уже используются в доставке в нескольких других штатах. Например в Хьюстоне (Техас) компания Nuro развозит с их помощью пиццу. Фирма разработала для этого специальный автомобиль без кабины для водителя и пассажиров.

В России разработкой беспилотных автомобилей занимается «Яндекс». В середине октября сотрудники ГИБДД остановили беспилотник компании в Татарстане. Во время остановки в автомобиле находился инженер-испытатель.

https://tjournal.ru/

Опрос: растет число россиян, считающих, что гаджеты приносит больше вреда, чем пользы

Не согласны с этим утверждением 26% россиян. 6 лет их число составляло 17%.

Также социологическое исследование продемонстрировало, что 69% россиян не мыслят себя без мобильного телефона или смартфона, 31% от каких гаджетов не зависят.

 

На вопрос об отрицательных сторонах в использовании переносных электронных устройств, 17% россиян упоминают вред для здоровья, каждый десятый опрошенный говорит, что гаджеты отрицательно влияют на детей, также каждый десятый упоминает возникаемую зависимость к мобильному устройству.

За 6 лет более чем вдвое выросло число тех, кто считает, что использование гаджетов снижает личную свободу — с 16 до 35%

https://www.gazeta.ru/

В NASA одобрили финальную сборку «тихого самолета»

X-59 QueSST

X-59 QueSST / © NASA

Экспериментальный летательный аппарат X-59 QueSST, разрабатываемый корпорацией Lockheed Martin, готов к финальной сборке. Национальное аэрокосмическое агентство США после тщательной проверки дало добро на строительство первого тестового экземпляра. Предполагается, что испытания самолета стартуют в 2021 году.

X-59 разрабатывается в рамках проекта по созданию сверхзвуковых малошумных пассажирских лайнеров. Обычно сверхзвуковые самолеты при преодолении звукового барьера издают очень громкий звук. X-59, благодаря своим аэродинамическим свойствам, лишен этого недостатка: на сверхзвуковой скорости он будет не громче, чем закрывающаяся дверь автомобиля (75 децибел).

В NASA собираются протестировать «тихий самолет» на определенной группе людей и оценить уровень издаваемого им шума. На сегодня в США полеты сверхзвуковых самолетов над населенными пунктами запрещены, но благодаря X-59 это правило могут пересмотреть.

Ранее стало известно, что самый большой самолет в мире хотят превратить в носитель сверхзвукового оружия, а в России заморозили разработку Ил-596 — самолета, который должен был перевозить блоки ракет для полетов на Луну

https://naked-science.ru/

Электромобили: нескромные могильщики рабочих мест

Многие уверены: электроавто – игрушка зеленых, которая никогда не будет доминировать на планете. Разбираемся, почему электромобили уже скоро отнимут у обычных машин основную часть рынка и чем это грозит мировой экономике.

Электромобили в XXI веке стали выпускаться миллионным тиражом всего через десять лет после появления первого серийного авто с электроприводом. / ©insideevs.com
Электромобили в XXI веке стали выпускаться миллионным тиражом всего через десять лет после появления первого серийного авто с электроприводом. / ©insideevs.com

В 2018 году в мире было продано 1,4 миллиона электромобилей (без гибридов) — более полутора процента авторынка. Интересно, что лидером электросектора — четверть миллиона машин — оказался производитель из верхнего ценового сегмента, у которого самая дешевая машина стоит 35 тысяч долларов. Многие наблюдатели считают, что уже к началу 2030-х годов электромобилей будет продаваться больше, чем обычных машин.

Может показаться странной сама постановка вопроса. Почему вообще электромобили должны получить основную часть рынка? Чем это они лучше машин с двигателем внутреннего сгорания? Чтобы прояснить ситуацию, надо взглянуть на кнут и пряник, которыми потребителей заставляют пересесть с одного автомобиля на другой.

Пряник для потребителя: победа нескромности

Обычный автомобиль имеет двигатель внутреннего сгорания больших размеров и многоступенчатую трансмиссию, позволяющую ему эффективнее передавать энергию на ведущую ось. В электромоторе не идет сгорание, то есть он меньше греется при работе. Поэтому его можно раскручивать до более высоких оборотов. То есть при равных с ДВС габаритах он будет в разы мощнее. Электрический мотор хорошо «тянет» во всем диапазоне оборотов, так что ему достаточно простой и компактной одноступенчатой трансмиссии.

Блок мотор-трансмиссия у электромобиля так мал, что его можно «сажать» прямо на ведущую ось, «заделать в пол». Ему не нужно выделять место под капотом, отчего при той же общей длине машины электромобиль всегда будет выходить просторнее обычного. Да, аккумулятор электроавто много больше бензобака. Зато батарею можно сделать такой плоской, что она поместится в плоскость днища машины, практически не забирая места у салона.

Типичная батарея электромобиля размещается тонким слоем в его днище, что позволяет получить большой салон с плоским полом / ©Cardebater
Типичная батарея электромобиля размещается тонким слоем в его днище, что позволяет получить большой салон с плоским полом / ©Cardebater

Вес аккумуляторов (полтонны для «дальнобойного» электромобиля) тоже, как ни странно, не является большой проблемой. При рекуперативном торможении электромотор работает как генератор, отдавая ток обратно в батарею. Значит, лишние энергозатраты на разгон дополнительной полутонны веса почти полностью компенсируются при таком торможении.

Еще один плюс электрического автомобиля — мощность моторов. У ДВС-авто больший мотор, как правило, поднимает расход энергии на километр. У электромобиля с очень мощным двигателем рекуперативное торможение будет возвращать больше энергии, чем у такой же машины с мотором послабее. То есть электроавто «от природы» тяготеют к большей мощности, чем ДВС-мобили.

Несмотря на все эти плюсы, многие годы электромобили продавались плохо. Машина сравнивается потребителем с аналогами, как ни удивительно, по двум параметрам: размер (внутри) и динамика. Второе очень странно, потому что водителей, разгонявшихся хотя бы раз в жизни на максимальной динамике своего автомобиля, не наберется и десятка процентов от общей массы. Но на практике это именно так. Дело в том, что автомобиль — не только средство передвижения, но и «статусная вещь», которой владелец пытается обозначить свое социальное положение. Именно поэтому он часто берет кредит, лишь бы набрать помощнее двигатель да побольше опций.

Nissan Leaf производитель сделал на той же платформе, что и Nissan Note. Поэтому и динамика, и размер салона оказались не лучше, чем у машин с ДВС, а места для большой батареи просто не нашлось / ©Wikimedia Commons
Nissan Leaf производитель сделал на той же платформе, что и Nissan Note. Поэтому и динамика, и размер салона оказались не лучше, чем у машин с ДВС, а места для большой батареи просто не нашлось / ©Wikimedia Commons

Типичным электромобилем еще восемь лет назад был Nissan Leaf первого поколения — небольшой, с не слишком сильным двигателем и зарядом батарей всего на 160 километров пути (здесь и далее используется цикл ЕРА). С нуля до 96,5 км/ч он разгонялся за 9,8 секунды — как одноклассник с ДВС. Поскольку мощность двигателя Leaf выбрали как бензиновой машине, то и максимальную скорость ограничили 150 километрами в час, а рекуперативное торможение получилось слабоватым.

Охлаждение батареи электромобиля было воздушным, ее подогрев зимой был слабым, и при остывании до минус 20 градусов машина уже никуда не ехала. Все это сделали, чтобы Leaf вышел по возможности дешевым, поскольку электромобили делали не массово, а немассовое авто нельзя производить дешево без крайних мер экономии.

Такие электроавто выглядели как «урезанные» обычные — скорость, ограниченная 150 километрами в час, дальность, усеченная до 160 километров. Зарядка шла на мощности не выше пары десятков киловатт (иначе не справляется воздушное охлаждение батареи). То есть в пути быстро не подзарядиться. Недалеко и несупербыстро, зато экологичненько. Воспринимались такие машины потребителями соответственно: вторая машинка для тех, у кого уже есть первая.

Согласно опросам среди американских женщин от 2014 года, водители электромобилей и гибридов вызывали их наименьший интерес в качестве потенциальных партнеров. Только 9% штатовских дам видели их в таком качестве. Владельцы обычных машин были им в разы интереснее (до 32%). Аналогичная картина нарисовалась при опросе мужчин относительно женщин-водителей.

Как ни странно, для продаж машины это очень значимый фактор: машину часто покупают как средство социального позиционирования, а позиционирование «я за экологию, но мне наплевать на противоположный пол» часто встречается только среди тех, у кого любовь к природе зашла уж слишком далеко.

Естественно, электромобили продавались очень медленно. С тех пор Nissan Leaf несколько раз подтягивали по параметрам, но его продажи по-прежнему не достигают даже 7% электромобильного рынка. Правда, продавать модель начали раньше других, поэтому на сегодня Nissan Leaf все еще лидер электропродаж, хотя это и закончится уже в 2020 году.

В 2017-м на массовый рынок вышел игрок с прямо противоположной концепцией: будь нескромным. В сегменте «среднеразмерных машин» начала собственное производство Tesla. Ее Model 3 по размерам салона соответствует BMW третьей серии, Mercedes C-класса и Audi A4 (на самом деле, даже превосходит, хотя и не сильно).

Причины этого мы уже описали: электромоторы много меньше ДВС, трансмиссия сверхкомпактная. Батарея «размазана» тонким слоем по днищу, поэтому не крадет объем у салона. От этого машина с ДВС при тех же внешних размерах всегда будет иметь меньше пространства внутри: ее мотор и трансмиссия сильно больше, и их не размажешь тонким слоем толщиной в считаные сантиметры, как аккумулятор электроавто.

По динамике Model 3 тоже превосходит упомянутых ДВС-конкурентов. Model 3 за 35 тысяч долларов разгоняется до 96,5 километра в час за 5,6 секунды. За столько же это делает BMW 330i (самая дешевая «трешка» в США), только стоит она от 40,75 тысячи долларов. Model 3 Perfomance разгоняется до той же скорости за 3,2 секунды, то есть на уровне спорткаров, а не седанов. Речь не только о скорости: в трековых гонках машины этой линии тоже показывают себя лучше близких обычных из той же ценовой категории.

Никаких чудес здесь нет: самая «бедная» Model 3 имеет мотор мощностью 287 лошадиных силы, то есть заметно мощнее двигателя БТР-80, а ведь тот весит более 13 тонн. Неудивительно, что немцы уступили большую часть своего сегмента американского рынка этому электромобилю.

Общие продажи одного среднеразмерного электромобиля в США превысили продажи аналогичных по размерам и цене конкурентов: BMW третьей серии, Аudi A4 и Mercedes C-класса. Как только в Европе наладят местное производство электромобилей сходных параметров, та же ситуация сложится и там   / ©CleanTechnica
Общие продажи одного среднеразмерного электромобиля в США превысили продажи аналогичных по размерам и цене конкурентов: BMW третьей серии, Аudi A4 и Mercedes C-класса. Как только в Европе наладят местное производство электромобилей сходных параметров, та же ситуация сложится и там / ©CleanTechnica

Конечно, остаются еще Toyota Camry, Honda Accord и им подобные — формально по размеру салона они как Model 3, но при этом их цена в тех же США начинается от 22-25 тысяч долларов. Однако мы недаром говорили про динамику: быстрейшая из «Камри» разгоняется до 95,4 километра в час более чем за семь секунд — то есть значительно уступает базовой Model 3 при той же цене.

Общие накопленные продажи седанов в ценовом классе Model 3 в США за 2018 год и часть 2019 года. Хорошо видно, что электромобиль продается лучше любого ДВС-седана своей ценовой категории / ©insideevs.com
Общие накопленные продажи седанов в ценовом классе Model 3 в США за 2018 год и часть 2019 года. Хорошо видно, что электромобиль продается лучше любого ДВС-седана своей ценовой категории / ©insideevs.com

Еще раз повторимся: к практической, объективной полезности машины все это не имеет, на первый взгляд, никакого отношения. 95% водителей никогда не разгонялись на своих машинах от нуля до сотни за технически возможное минимальное время. В обычной жизни в этом просто нет нужды.

Но специфика автомобильного рынка в том, что он продает человеку не только средство передвижения, но и средство демонстрации своего финансового, социального и иного статуса. В этом смысле выбор Tesla «сделать электромобиль быстрее равных по цене и размеру конкурентов» полностью сработал. Мощные, но все равно небольшие электромоторы лишь незначительно подняли цену машины, зато довели ее динамику туда, куда не могут попасть ДВС-мобили той же стоимости.

Только в 2018 году выпущено 157,3 тысячи Model 3, а за первые три квартала 2019 года — 220,3 тысячи. Четвертый квартал — самый успешный по автопродажам в мире, то есть выпуск Model 3 в этом году должен удвоиться. Это довольно неплохо, если вспомнить, что авторынок в 2019-м испытывает то, что американская пресса называет коллапсом: продажи упали на четыре миллиона штук в год (минус 5%).

А вот более скромный Nissan Leaf сильно отстает по продажам от своего более дорогого конкурента. В 2018 году его произвели 87,5 тысячи, за три квартала 2019 года — менее 59 тысяч. Это в 3,7 раза меньше, чем у Model 3 в этом году. То есть электромобиль с репутацией «скромного, зато зеленого» падает вместе с мировым авторынком, а тот, что сделан по концепции «нескромного, да еще и зеленого», — напротив, быстро растет. Нескромный явно победил скромного.

На американском рынке электромобили уже вошли в массовый сегмент: средняя цена нового авто в США — 35 тысяч долларов, то есть как стартовая стоимость Model 3. Но у остального мира столько денег нет, поэтому там переход на новый транспорт начнется действительно энергично только после создания электромобилей той же дальности, но по меньшей цене.

На первую половину 2020-х уже запланирован выход такого автомобиля стоимостью от 25 тысяч долларов. Именно этот ценовой сегмент доминирует в Европе. В КНР население победнее, но местная Компартия железной рукой ограничивает покупки ДВС-мобилей (их нельзя купить без участия в специальной дорогостоящей лотерее). Поэтому на китайском рынке переход на электромотор будет идти также довольно быстро.

Страны типа России последними завершат полный переход. Средняя цена новой машины на нашем рынке намного ниже 25 тысяч долларов. И, судя по динамике доходов населения, это надолго. Тем не менее не избежать перехода и нам. Во-первых, стоимость электромобилей продолжит падать и далее, ведь стабильно дешевеют аккумуляторы, да и начало массового производства сильно снижает издержки. Во-вторых, в России в основном собирают машины, разработанные за рубежом (например, платформа В0 в случае ВАЗ), благо владельцы нашего автопрома — в основном иностранцы.

Крупные западные производители режут вложения в новые ДВС-платформы, планируя скоро вообще отказаться от них. Без центров разработки на Западе отечественное автомобилестроение окажется в ситуации СССР, штампующего лицензионные «фиаты». Да и западные владельцы российских автопредприятий на правах собственника начнут выпускать электромобили у нас.

Кнут: экология вымышленная и реальная

Мы уже отмечали, что опасения относительно глобального потепления сильно преувеличены, а местами и ставят реальность с ног на голову. В действительности это явление трудно назвать опасным: биомасса на планете и число деревьев на ней же из-за потепления быстро растут. Равно как и пригодная для обитания человека часть суши.

Советская карта изотерм среднегодовой температуры показывает, что Москва не входила в зону среднегодовых плюс четырех градусов. Сейчас среднегодовая температура в Москве — +6,6. Вологда на карте холоднее среднегодовых плюс двух. Сейчас среднегодовая там +3,1. Налицо потепление тех же масштабов, что ожидает всю планету за XIX-XXI века. Однако экологической катастрофы из-за этого не случилось ни под Москвой, ни в Вологде. Не случится ее и в мире в целом / ©geographyofrussia.com
Советская карта изотерм среднегодовой температуры показывает, что Москва не входила в зону среднегодовых плюс четырех градусов. Сейчас среднегодовая температура в Москве — +6,6. Вологда на карте холоднее среднегодовых плюс двух. Сейчас среднегодовая там +3,1. Налицо потепление тех же масштабов, что ожидает всю планету за XIX-XXI века. Однако экологической катастрофы из-за этого не случилось ни под Москвой, ни в Вологде. Не случится ее и в мире в целом / ©geographyofrussia.com

Однако подавляющее большинство человечества не в курсе этих научных фактов. Благодаря не вполне корректному изложению проблемы многими СМИ глобальное потепление считают катастрофой, которая приведет к гибели цивилизации и массовому вымиранию.

В истории человечества объективные факты стабильно оказываются менее значимыми, чем субъективные представления. Это значит, что для общественного мнения не так важны реальные, но малоизвестные положительные последствия глобального потепления, как воображаемые, но широко тиражируемые отрицательные. Поэтому западный мир упорно борется с антропогенными выбросами СО2 и будет делать это еще упорнее в ближайшем будущем.

С этой точки зрения переход на электромобили абсолютно неизбежен. Как мы подробнее покажем ниже, вновь вводимые солнечные и ветровые электростанции с лихвой покрывают потребление электротранспорта. А нынешние ДВС-мобили потребляют 50% добываемой в мире нефти, то есть выбрасывают миллиарды тонн СО2 ежегодно. Невозможно резко сократить антропогенные выбросы углекислого газа, не избавившись от господства двигателей внутреннего сгорания.

Свернуть мир с пути фанатичной борьбы с глобальным потеплением вряд ли возможно. Даже глава США, самой мощной державы на планете, не может этого добиться. После его второго срока там не останется ни одного политика достаточно смелого, чтобы не бороться с потеплением. То есть власти западного мира сделают все, чтобы продавить победу электромобилей — и новыми субсидиями, как в Германии, и запретом на использование ДВС-мобилей в городах, который уже готовится в целом ряде столиц мира.

К счастью, у электромобилей есть не только всеми обсуждаемые вымышленные экологические плюсы (меньше выбросов СО2), но и мало обсуждаемые реальные.

Основной вред здоровью выхлопы обычных машин несут в виде твердых микрочастиц — меньше 10 микрометров в диаметре, — невидимых нашим глазам. Они попадают в легкие, а оттуда — в кровоток. Вокруг них образуются тромбы, дающие нагрузку на сердечно-сосудистую систему. Чем больше в кровотоке микрочастиц, тем выше (при прочих равных) риск смерти от инфаркта или инсульта.

Всего в мире сотни тысяч человек в год погибают от выхлопов машин с ДВС. Сколько от них гибнет в России — сказать сложно, потому что этот вопрос пока не попадал в область интересов отечественных ученых. Если ситуация схожа по миру в целом или с США, по которым такие цифры собираются, то в России выхлопы уносят никак не меньше десятка тысяч жизней в год.

Выработка солнечных электростанций растет быстрее потребления электромобилей, поэтому переход на них не заставляет сжигать больше ископаемого топлива. Это видно даже на примере крупнейшего производителя электромобилей / ©Tesla
Выработка солнечных электростанций растет быстрее потребления электромобилей, поэтому переход на них не заставляет сжигать больше ископаемого топлива. Это видно даже на примере крупнейшего производителя электромобилей / ©Tesla

Переход на электромобили неизбежно снизит эту смертность, даже там, где электричество вырабатывают на ТЭС, также выбрасывающих такие микрочастицы. Дело в том, что выхлопы машин попадают в легкие городских жителей по кратчайшему пути, на улицах, убивая эффективнее всего. Труба ТЭС расположена высоко и распределяет микрочастицы по большой площади: от электростанций «выхлоп» получается не таким убойным.

Простой пример: будь все легковушки в США электромобилями, то они тратили бы лишь 0,8 триллиона киловатт-часов в год. При этом автомобильные выхлопы убивают в Штатах 53 тысячи человек ежегодно. Электростанции в этой стране вырабатывают более 3,5 триллиона киловатт-часов в год, примерно в четыре-пять раз больше, чем потреблял бы полностью электрифицированный автотранспорт. Но при этом ТЭС в США убивают микрочастицами 52 тысячи в год.

Иными словами, киловатт-час, полученный на тепловой электростанции, в несколько раз менее смертелен, чем такое же количество энергии, полученное сжиганием топлива в ДВС-мобиле. Любая крупная страна может снизить число погибших от автомобильных выхлопов на 80%, даже если будет питать электроавто исключительно от ТЭС. В реальной жизни выигрыш будет больше 80%: ведь четверть электричества в мире получают от более безопасных типов электростанций.

Другой явный плюс электромобилей — снижение шумового загрязнения, особенно в городах. На скоростях сильно выше 60 километров в час основной источник шума от машины — шины, но до 60 километров в час шумит именно двигатель, причем он выдает в два-три раза больше децибел. Полная электромобилизация будет означать более тихие улицы для мегаполисов.

Да ладно, скажут нам скептики. Допустим, электромобили вместительнее и быстрее обычных машин, но что делать с кучей непреодолимых препятствий на пути их внедрения? Попробуем рассмотреть их — и показать, почему, на самом деле, это и не препятствия вовсе.

Миф № 1: ограниченная дальность сдерживает наступление электромобилей

Очень многие — вплоть до президента GM — утверждают, что электромобили имеют малый пробег на одной зарядке. По опросам GM, большинство покупателей сегодня хочет 480 километров дальности. Как заключает президент этой корпорации: «Пока не будет решена эта проблема, электромобили не преуспеют».

Откровенно говоря, проблема давно решена. Модификации Model 3 с дальностью до 515 километров и более выпускают с 2017 года, сделано их уже 0,44 миллиона. Но важнее другое: не факт, что опрос GM в самом деле влияет на продажи. Популярные модификации той же Model 3 имеют дальность всего 400 километров. Как видим, либо исследование GM что-то упустило, либо президент корпорации пытается приписать электромобилям проблемы, которых нет.

Причина, по которой дальности в 400 километров вполне хватает большинству, — в малом среднем пробеге обычного автолюбителя. В США это 60 километров в сутки (поскольку почти все живут за городом), в других крупных странах — еще меньше. Достаточно заряжать батарею раз в неделю, чтобы не остаться без заряда.

Пока в мире всего пара тысяч высокоскоростных «электрозаправок», но их число быстро растет, и в развитых странах особых проблем с дальними поездками уже нет / ©Tesla
Пока в мире всего пара тысяч высокоскоростных «электрозаправок», но их число быстро растет, и в развитых странах особых проблем с дальними поездками уже нет / ©Tesla

Дальние поездки могут доходить и до тысячи километров в сутки, но и здесь дальность в 400 километров вполне приемлема. За 12-16 минут на «заправке» самый массовый электромобиль на сегодняшнем рынке получает достаточно заряда, чтобы проехать еще 224 километра. То есть даже на пути в тысячу километров на заправках придется провести меньше часа — столько же, сколько сегодня тратит на остановки водитель обычной машины, решившийся на такое путешествие.

Миф № 2: ресурс батареи — несколько лет, как в смартфоне

Многие сравнивают современные электромобили по живучести батареи со смартфонами и планшетами — после пяти лет, как известно, аккумуляторы в них «умирают».

Это кажется логичным до тех пор, пока мы не вспомним, что самые популярные электромобили имеют жидкостную систему охлаждения литиевых батарей, которая не дает им ни перегреваться, ни переохлаждаться. Слегка отличается и химия катода: в автомобиле она оптимизирована под больший срок службы, в бытовой электронике часто — под минимальную толщину.

Поэтому на стендах батареи тех же «тесл» показывают сохранение 80% емкости даже после 800 тысяч километров пробега (на стенде испытания идут непрерывно). Практические результаты пользователей подтверждают эти данные: потеря емкости сильно падает со временем, и сейчас есть батареи, отходившие по полмиллиона километров с умеренной потерей емкости.

Что интересно, в 2020 году Tesla предполагает запустить в производство несколько измененные по химии батареи. Оценочно они будут иметь примерно вдвое больший ресурс, чем нынешний. Это выглядит бессмысленным для обычного пользователя: мало людей проезжают за жизнь даже 800 тысяч километров — ресурс уже существующих батарей.

Электромоторы и односкоростная трансмиссия электромобилей уже показали на стенде пробег до 1,6 миллиона километров без потери работоспособности. Обычные пользователи успели продемонстрировать эксплуатацию таких комплектов мотор-трансмиссия по 0,6 миллиона километров без поломок / ©Tesla
Электромоторы и односкоростная трансмиссия электромобилей уже показали на стенде пробег до 1,6 миллиона километров без потери работоспособности. Обычные пользователи успели продемонстрировать эксплуатацию таких комплектов мотор-трансмиссия по 0,6 миллиона километров без поломок / ©Tesla

Но батареи с пробегом в 1,6 миллиона километров значимы для таксистов (а электромобили часто выбирают для такси), а также сохранения цены машины при перепродаже. Этому помогает и то, что внешние панели наиболее популярных электромобилей делают из алюминиевого сплава, стойкого к коррозии. Рынок уже стал учитывать этот момент: бывшие в употреблении Model S и Model 3 теряют в цене (при перепродаже) меньше сверстников с ДВС.

Миф № 3: холод против электромобиля

Как известно, при минус 20 и холоднее пробег электромобиля на одной зарядке падает на 30%. Если нет отапливаемого гаража, то «заправляться» ему приходится раз в два дня, заметно чаще обычного. В России это зачастую оценивают как серьезную проблему в электрификации транспорта.

Однако достаточно одного взгляда на климатическую карту Земли, чтобы понять: это не так. Нулевая изотерма января — граница, южнее которой средняя температура самого холодного месяца в году остается выше нуля: проходит по западной границе бывшего СССР. В Северной Америке она проходит через наименее населенное меньшинство штатов США и Канаду.

То есть лишь 5% населения Земли живет там, где можно вести речь о серьезных холодах. Холодные районы планеты просто не могут быть плотно населены: люди редко хотят там жить. В мировом масштабе климат никак не может повлиять на электромобилизацию.

В России ситуация, бесспорно, чуть отличается. Поэтому у нас так любят вопрос «Как вы будете электрифицировать машины в Якутии?» (хотя конкретно в городах Якутии электромобили при минус 47 ездят лучше ДВС-мобилей).

Но это, по сути, не особенно важно. В зоне вечной мерзлоты у нас живет всего 2% населения, а остальные 98% — там, где ее нет. «Мерзлотные» регионы в принципе малообитаемы, и эта ситуация не изменится ни в каком будущем. Поэтому Якутия и тому подобные места на ситуацию, типичную для 98% населения России, никак не влияют.

И в Москве, и в Перми, и в иных теплых, по российским меркам, местах случаются сильные морозы. Могут ли они помешать электромобилям? Честно говоря, сомнительно. Во-первых, надежная работа электромобилей при низких температурах — давно доказанный экспериментально факт. Марсоходы по ночам охлаждаются до минус 100 и, несмотря на это, спокойно ездят по много лет без малейшего технического обслуживания. Между тем технически это именно электромобили, причем использующие литиевые батареи.

Во-вторых, снижение дальности на 30% само по себе не такая проблема. В минус 20 и ниже пользователю электромобиля просто придется заряжаться раз в два дня, как сибирские владельцы таких машин и делают сегодня. Владелец электромобиля, который зимой решится на путешествие на тысячу километров, простоит на заправках не 45-50 минут, а 70-75 минут. Определенно, не так удобно как в безморозный период. Но так же определенно и то, что это не особенно большая разница.

Миф № 4: лития и кобальта для батарей не хватит, а б/у батареи угрожают экологии

Рассуждения в прессе о нехватке лития для электромобилей редко доходят до конкретных цифр. Между тем они сильно отрезвляют: на аккумулятор той же Model 3 в среднем нужно всего 10 килограммов этого металла. Для миллиона электромобилей в год достаточно 10 тысяч тонн, а для 100 миллионов (полное замещение обычных легковушек) — миллиона тонн в год.

Лития в составе литиевой батареи – всего один процент / ©The Electrochemical Society
Лития в составе литиевой батареи – всего один процент / ©The Electrochemical Society

Лития уже сегодня добывается 70 тысяч тонн в год, и даже легкое увеличение цены заметно расширит объем его коммерчески целесообразных резервов (его станет выгодно добывать из воды высокой солености). Но и на существующих источниках добыча металла постоянно растет. С кобальтом сырьевая ситуация еще проще: добывают его больше, а содержание кобальта в батареях для электромобилей быстро падает.

Часто можно услышать опасения: б/у литиевые батареи сегодня не утилизируют, а уже завтра ими покроется вся планета. Чтобы понять, сбудется это или нет, нужны цифры. Сколько опасных для здоровья компонентов в батарее электроавто? У самого массового электромобиля на рынке в батарее 10,5 килограмма лития и примерно в полтора раза больше кобальта. Остальные компоненты батареи — типа того же углерода — трудно отнести к токсичным.

Но и литий с кобальтом лишь умеренно опасны. Чтобы получить 50%-ный риск умереть от их приема, нужно запихать в себя несколько десятков граммов любого из этих металлов. Примерно такая же доза поваренной соли отправляет на тот свет с той же вероятностью. Однако никого не беспокоит загрязнение планеты поваренной солью — хотя ее в окружающей среде очень много.

Каждый литр морской воды содержит десятки граммов NaCl — тем не менее никакой паники. Цивилизация ежегодно добывает 300 миллионов тонн соли, основная ее часть используется в промышленности, откуда солоноватые стоки свободно попадают в водоемы. Да что стоки: 24 миллиона тонн соли ежегодно выбрасывается на дороги, откуда попадают в канавы (правда, никого там не убивая, в силу низкой токсичности).

Кобальт с литием опасны примерно в той же степени. И их использование в электромобилях никогда не достигнет даже десятков миллионов тонн в год. То есть опасность экологического загрязнения от литиевых аккумуляторов всегда будет много ниже, чем от обычной соли.

Почему разбрасывание в окружающей среде десятков миллионов тонн хлорида натрия никого не волнует, а куда меньшее количество близких по токсичности кобальта и лития вызывает столько опасений? Вероятнее всего, причина в том, что люди боятся необычного, а точнее — того, что они таким считают.

В реальной жизни гидроксид лития есть в автомобильных аккумуляторах, но мы никогда не слышали об этом. Более того, любой из нас часто сталкивался с соединениями лития в стеклянной и керамической посуде — именно туда, а не в батареи электромобилей уходит его основная часть. Вместе с битым стеклом и керамикой литий непрерывно попадает в окружающую среду уже очень давно, без малейших попыток его вторичной переработки.

Но пока мы о чем-то не знаем, мы не можем этого бояться. Электромобили привлекают больше общественного внимания, потому что общество о них хотя бы знает. Отсюда и опасения.

Развитие общества имеет свои законы, которые нужно учитывать. Один из них: решаются не те проблемы, что важнее, а те, которые общество считает важными. Из-за раскрученности проблемы вторичной переработки литиевых батарей крупнейший их мировой потребитель, Tesla, уже перерабатывает свои литиевые батареи. Сегодня их у компании крайне мало: большинство из 0,93 миллиона выпущенных ею машин еще не выработали ресурс аккумуляторов.

Поэтому переработка идет в крайне малых масштабах (утилизаций брака, замененного по гарантии) и стоит не так уж дешево (на единицу объема). Другие производители электромобилей выпустили еще меньше электромобилей, чем Tesla. Например, Nissan — в два раза меньше, остальные отстают еще сильнее. У них собственная переработка пока отсутствует. Но нет оснований полагать, что по мере более массового выпуска новых машин она не появится.

Миф № 5: не хватит электричества

Если весь миллиард машин на планете вдруг станет электромобилями, общая мощность их моторов будет 200 миллиардов киловатт (200 тераватт). Все существующие электростанции имеют мощность всего 10 тераватт. Из этого многие делают вывод: для полного перехода на электроавто никаких энергетических мощностей не хватит. Вдобавок, говорят сомневающиеся, электричество в мире вырабатывается в основном на угле и газе. Какой смысл переходить с ДВС на «углемобили»?

Электростанции огромны, и поэтому кажется, что их выбросы опаснее. Но автомобилей в мире намного больше, а главное, их выхлопные трубы намного ближе к легким людей / ©heritage.org
Электростанции огромны, и поэтому кажется, что их выбросы опаснее. Но автомобилей в мире намного больше, а главное, их выхлопные трубы намного ближе к легким людей / ©heritage.org

Сразу несколько нюансов делают эти расчеты не вполне основательными. Обратимся к конкретным цифрам. Самый массовый электромобиль на рынке тратит 15,5 киловатт-часа на 100 километров пробега (с кондиционером). Данные его рейтинга ЕPA подтверждаются и независимыми испытаниями, и опытом пользователей.

В год машина в среднем проезжает не более 20 тысяч километров — то есть тратит 3100 киловатт-часов. С потерями на низковольтных зарядках и паразитным потреблением (на климат-контроль салона и батарей) — менее 3500 киловатт-часов. То есть мы никак не заставим миллиард электромобилей потребить из сети более 3,5 триллиона киловатт-часов в год.

Мировая энергетика производит более 21 триллиона киловатт-часов в год уже сегодня. То есть полная электромобилизация потребовала бы роста потребления электричества всего на 17%. И это вовсе не значит, что придется строить новые ТЭС, чтобы «прокормить» электромобили.

Сейчас большинство электростанций приходится периодически выключать: ночью мало кто потребляет энергию, да и днем, между утренними и вечерними пиковыми часами, часть станций останавливают. Зато именно ночью и по приезде на работу 80% владельцев электромобилей заряжают их от гаражной или парковочной розетки.

Среднее время работы тепловой электростанции, например, в России — 4070 часов в год, или 46,5% от всего времени. Основную часть своей жизни типичная ТЭС банально простаивает. Электромобилизация позволила бы поднять среднее время работы ТЭС до 60% от общей длительности года, и это легко закрыло бы потребность в дополнительном электричестве.

Попутно выросла бы и рентабельность электростанций: чем больше киловатт-часов вырабатывается в год, тем быстрее окупается кредит, а именно на кредитные деньги строятся практически все ТЭС на планете.

Однако, возможно, ничего такого не случится. Сегодня в мире ежегодно вводят по 50 гигаватт ветряков и по 100 гигаватт солнечных батарей. Общая годовая генерация только нового ввода, таким образом, превышает 200 миллиардов киловатт-часов. Этого достаточно для заправки шести миллионов электромобилей.

Как мы уже отметили, в прошлом году в мире произвели всего 1,4 миллиона электромобилей. То есть ввод новых ветряков и солнечных батарей во много раз перекрывает рост потребления электричества из-за машин на аккумуляторах.

Стоит помнить о том, что ввод СЭС и ВЭС продолжает увеличиваться, а цены на их энергию — падать. В 2020-х их будут вводить в строй куда быстрее, чем сейчас.

Ведро дегтя

Итак, мы установили, что переход на электромобили снизит смертность на планете на сотни тысяч человек ежегодно. Это, безусловно, хорошо, но надо понимать, что у победы электромобиля будут и иные, неприятные последствия.

Новая фабрика Volkswagen, построенная специально для выпуска электромобилей. Увы, их прозводство компактнее, чем обычных машин, поэтому пареллельно автоконцерны сократят десятки тысяч рабочих мест на уже существующих заводах / ©electrek.co
Новая фабрика Volkswagen, построенная специально для выпуска электромобилей. Увы, их прозводство компактнее, чем обычных машин, поэтому пареллельно автоконцерны сократят десятки тысяч рабочих мест на уже существующих заводах / ©electrek.co

В мире миллионы людей работают в дилерских центрах (только в США их миллион), и у этих центров масса недвижимости (в Штатах они держат на своих площадях два миллиона машин). Между тем самые популярные электромобили продают без участия дилеров. Техосмотр у них раз в 20 тысяч километров, ресурс электромотора и трансмиссии выше, чем у ДВС. То есть миллионы людей из дилерских центров рискуют лишиться работы уже в ближайшие два десятка лет.

Как мы отметили выше, ресурс электромобилей уже сейчас около 800 тысяч километров (до заметной потери емкости батареей), то есть 40 лет пробега среднего водителя. Алюминий и нержавейка корродируют слабо. Это значит, что средний срок эксплуатации б/у машин заметно вырастет. В итоге число рабочих мест в автопроме — включая тех, кто делает запчасти — со временем заметно просядет. Ведь обычные машины делают из ржавеющей стали, и даже до миллиона километров доходит редкий ДВС: то есть б/у авто сложнее поддерживать на ходу.

Еще один удар по занятости электромобили нанесут в нефтяном секторе. Половина добываемой в мире нефти идет на автотранспорт, а вот электростанции ее избегают — слишком дорогая. Вытеснение ДВС-мобилей означает резкое сжатие будущего спроса на нефть. Впрочем, вряд ли этот процесс покажет себя ранее чем через десять лет, так что время приготовиться к новой реальности у нас есть.

https://naked-science.ru/

» Первый цифровой человек в Китае, имитируемый в реальном времени

На экране слева — реальный человек, а на экране справа — виртуальный цифровой человек с совершенно другим взглядом. Когда реальный человек говорит и выполняет движения, цифровой человек повторяет точно такие же, даже с одинаковым выражением лица — это Dawa Future, выпущенная компанией Imaging Technology Co., Ltd. 16-го числа. Это также первый цифровой имитируемый человек в Китае, который разработал весь процесс самостоятельно.

Не так давно на форуме по интеграции дельты реки Янцзы ответственное лицо в министерстве промышленности и информационных технологий, предложило создать цифровую двойную систему для всего жизненного цикла продуктов в ключевых отраслях промышленности. Кроме того, цифровые близнецы являются важным сценарием в эпоху 5G интернета вещей.

https://oko-planet.su/

Полиэтиленовый асфальт: российские дороги станут самыми прочными в мире

Судя по всему, тема «дураков и дорог» не дает покоя отечественным исследователям. Так, накануне, ученые из Новосибирска предложили очередную новую технологию модификации асфальта, которая позволит сделать российские транспортные пути одними из самых прочных и износостойких в мире.

На этот раз специалисты предлагают использовать высокомолекулярный полиэтилен, как добавку к асфальту. Стоит отметить, что данный материал, действительно обладает невероятной прочностью. В связи с чем, его применяют для изготовления суставных протезов, бронежилетов и летательных аппаратов.

Единственной проблемой, которую, собственно, и удалось решить отечественным химикам, является сложный и дорогостоящий процесс переработки полиэтилена в конечный продукт. Однако теперь, благодаря новому катализатору, появилась возможность исключить энергозатратные стадии производства материала и снизить его стоимость с 2500 до 150 рублей за килограмм.

Что касается нового асфальта, ученые предлагают формировать армирующие сетки из высокомолекулярного полиэтилена прямо внутри покрытия. По предварительным подсчетам, такая технология укладки сможет в три раза увеличить срок службы отечественных дорог.

К тому же, исследователи уверены, что применение подобных сеток не ограничится «упрочнением» асфальта. На их основе можно будет создавать защитную экипировку для велосипедистов и мотоциклистов, а также паруса и тросы.

Использованы фотографии: https://dartrans-bartoszyce.pl/
https://oko-planet.su/

Какой самый быстрый объект после света?

Учитывая высокую скорость света, может показаться, что во вселенной не существует вещей, способных двигаться хотя бы наполовину медленнее. Так и считалось долгое время, пока 15 октября 1991 года американские ученые не сделали удивительное открытие.

В атмосфере Земли с помощью специального детектора “Fly’s Eye” были зарегистрированы протоны, обладающие огромным импульсом. Несмотря микроскопический размер, частицы обладали энергией теннисного мячика, летящего со скоростью 150 км/ч. Это позволяло им разгоняться до скорости, практически полностью совпадающей со световой. Их назвали OMG-particle (протоны “О боже мой”).

Ученым удалось установить, что за 215 000 лет OMG проходит расстояние, всего лишь на сантиметр меньшее пути, которое преодолевает световой протон, а его скорость равна 99,99999999999999999999951% от световой. Таким образом, “О боже мой” считаются вторыми по скорости объектами во вселенной. На текущий момент подобных частиц зарегистрировано около сотни.

Ученые начали сравнивать свойства OMG с поведением частиц, разгоняемых в адронном коллайдере. Оказалось, что во время взаимодействия с атмосферой Земли протоны потратили большое количество кинетической энергии, и величина последней оказалась в 50 раз больше аналогичной, выделяемой при столкновении частиц в ускорителе.
Скорость частиц в адронном коллайдере

После того, как в 2000-ом свою работу прекратил большой электрон-позитронный коллайдер, было принято решение построить усовершенствованную модель. Еще во второй половине 80-х ученые создавали различные наработки и чертежи, которые начали реализовываться в 2001-ом году.

В эксплуатацию адронный коллайдер был запущен в 2008 году, но спустя пару недель один из его контактов расплавился и спровоцировал аварию. Из-за этого работу пришлось остановить до середины 2009 года. Приведя установку в порядок, работники и ученые возобновили эксперименты. Основной их деятельностью было столкновение различных частиц на больших скоростях и изучение полученных продуктов в ходе реакции. Одним из наиболее значимых открытий, сделанных с помощью установки, является обнаружение элементарной частицы – бозона Хиггса, существование которой предсказывал ученый еще в 1964 году.

И если в первое время после аварии ученые не осмеливались использовать всю мощность коллайдера, то постепенно они начали разгонять частицы все быстрее. Конструкция устройства представляет собой замкнутый тоннель, длина окружности которого составляет 26 659 м. Частица двигается по кругу с определенной скоростью, и максимальное значение данной величины было получено при запуске протонов с энергией 7 ТэВ: их скорость лишь на 3 м/c медленнее световой. Это значит, что за секунду частица делает полный круг примерно 10 тысяч раз. В теории, такие протоны можно считать третьими по скорости объектами во вселенной.

https://oko-planet.su/

Ученые создали чип, очень похожий на человеческий мозг

Как создать искусственный мозг

В содружестве со своими коллегами из японского Национального института материаловедения, команда создала экспериментальное устройство, которое демонстрировало характеристики, аналогичные определенным типам «поведения» мозга — обучению, запоминанию, забыванию информации, бодрствованию и даже сну.

То, как устройство постоянно развивается, очень похоже на то, как ведет себя человеческий мозг. Оно может «придумать» различные типы моделей поведения, которые не повторяются. — говорят ученые в пресс-релизе, посвященном своей работе.

Устройство, которое создали исследователи, сделано из «клубка» серебряных нанопроволок со средним диаметром всего 360 нанометров (прим.ред. нанометр — это одна миллиардная часть метра). Нанопроволоки были покрыты изолирующим полимером толщиной около 1 нанометра. В целом, само устройство получилось размером в 10 квадратных миллиметров.

Случайным образом собранные на кремниевой пластине нанопроволоки сформировали высоко организованные структуры, которые удивительно похожи на те, которые формируют неокортекс, часть мозга, участвующую в высших функциях, таких как язык, восприятие и познание. Одной из особенностей, отличающих нанопроволочную сеть от обычных электронных схем, является то, что электроны, проходящие через них, вызывают изменение физической конфигурации сети. В ходе исследования электрический ток заставил атомы серебра мигрировать из полимерного покрытия и образовывать новые соединения. Система имела около 10 миллионов таких связей, которые аналогичны синапсам, благодаря которым соединяются и общаются клетки мозга.

Устройство новго чипа

Исследователи прикрепили два электрода к получившемуся образцу, чтобы проверить, как работает нейросеть. После того, как ток протекал через сеть, связи между нанопроволоками сохранялись в течение одной минуты, что напоминало процесс обучения и запоминания, протекающий в головном мозге. В других случаях связь резко обрывалась после окончания заряда, имитируя «процесс забывания».

 

В других экспериментах исследовательская группа обнаружила, что при меньшем расходе энергии устройство демонстрирует поведение, соответствующее тому, что видят нейробиологи, когда они используют функциональное сканирование МРТ для получения изображений мозга спящего человека. При большей мощности нанопроволочная сеть вела себя так же, как и бодрствующий мозг. А как вы считаете, это действительно шаг к созданию умных машин?

Наш подход может быть полезен для создания новых типов оборудования, которые являются одновременно энергоэффективными и способным обрабатывать сложные наборы данных.

Из-за их сходства с внутренней работой мозга будущие устройства, основанные на технологии нанопроволок, могут быть крайне энергоэффективными. Человеческий мозг работает на мощности, примерно эквивалентной мощности 20-ваттной лампы накаливания. В отличие от нее, компьютерные серверы, на которых выполняются трудоемкие задачи, используют в сотни раз больше электроэнергии.

 

https://oko-planet.su/